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DIFFUSION AND MULTIVELOCITY MODELS OF TWO-PHASE MEDIA IN 
AN ELECTRIC FIELD* 

V. V. GOGOSOV, V. A. NALHTOVA, AND G. A. SHAPOSHNIKOVA 

The motion of fluid containing gas bubbles or incompressible particles in an electic 
field is considered. A new model of disperse medium in which a separate equation 
of motion is devised for each phase, with the presence of other phases taken into 
account by adding to equations terms related to interphase momentum exchange, the 
"multivelocity" approximation, is devised. Formulas are obtained for forces generat- 
ed by discrepancies in the permittivity and conductivity of phases, which are ex- 
erted by the electric field on each phase. Formulas for phenomenological coeffic- 
ients in the equations of "diffusion" and "multivelocity" models are also obtained. 
Derivation of the mixture energy equation is presented for the case of a multiveloc- 
ity uneven-temperature medium. The physical meaning of terms appearing inthe equat- 
ions is explained, and the structure of equations which define the electric field 
effect on bubble volume is discussed. 

The new effect of adding to the equation of motion the force acting on the dispersed 
phase associated with the medium polarization is investigated. That force represents an 
additional "pressure gradient" which imparts to the mixture of two incompressible phases the 
properties and characteristics of a compressible medium. The medium compressibility manifests 
itself by the appearance of weak perturbations at a finite velocity induced by the electric 
field, in which the dispersed phase volume concentrationchangestogether with the mixture per- 
mittivity, the electric and other parameters. 

The propagation velocity of weak discontinuities is determined in the case of the multi- 
velocity and diffusion models. It is shown that simplification or complication of the system 
of equations, as well as the addition to equations of terms that define the interaction between 
the electric field andthepolarizable medium may lead to a change of the type of equations, 
which must be taken into consideration in the formulation and solution of specific problems. 

The fundamentals of polarizable and magnetizable media hydrodynamics are set forth in the 
monograph /l/. Derivation of equations defining the motion of multicomponent and disperse 
systems appears in /2-44/ in the diffusion approximation in which each component or phase are 
polarized, generally in conformity with their specific laws. 

1. The equations of motion of a fluid with gas bubbles in an electric 
field, The diffusion approximation. Let us consider the motion of such fluid, assum- 
ing the fluid incompressible and the gas in bubbles perfect. 

In the considered here problem of a two-phase medium on the assumption of equal tempera- 
turesofphases, of absence of chemical reactions and of free charges, of the possibility of 
neglecting the mixture viscosity, and that the mixture permittivity depends only on the volume 
concentration of bubbles, the equations of motion determined without the constraints appearing 
in /3,4/ are of the form (in the diffusion approximation cross effects are disregarded) 

s+ dmpu=o, +-i-(r-l)divu=-*, J=p,(vz_-u) 
I’1 

(1.1) 

Pl”==onst, p=p1+pz, pl=pl”(i-r), pz=pzT 
dUi 

pdt=-“Zi a ,;~{~-(F-r~)~~ik)/-PRi, p”=pl’l-l-pev* (1.21 

J=TL~(~,,--~)+~Vp,,-t(~--)Vp+~V~~~ (1.3) 

-$- p$+pu)=-& 
( 

,{~u~(~+u)+~~[~-~(E+~~)]+~[EHI~--v~T-J~~~ (1.4) 

(1.5) 
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~l=u,,-~,,T=f,(T). 502=LJos--sS0*T-L +=fz(T,p?O)-. sol = crl In T, so2 = c,,~ In T - Rz In pe3 (1.6) 

(1.7) 

where P~",c~, vcl. U,, , and %a~ are the true density, mass concentration, velocity, internal 

energy, and the entropy of a unit mass, respectively (in the absence of field) of the aphase 
with a 1 for the fluid and a = 2 for the gas; r is the volume concentration of bubbles; 
11 and T are, respectively, the mixture mean mass velocity and temperature; p is the press- 

ure in the carrier medium denoted in /3/ by pi"c/(l - l'),c, and cP2 are the specific heats of 

gas at constant volume and pressure, respectively; Hz = cy2 -c,* is the gas constant; ~1 and 
x are, respectively, the fluid specific heat and the thermal conductivity coefficient; R 

is the free fall acceleration vector; E, D, and e are, respectively, the electric field intens- 

ity, electric induction and the mixture permittivity; I, and Lr are coefficients of kinetic 

equations denoted in /3/ by l’m2L,,2 and YJ,O.J , respectively. 
The mixture permittivity is dependent only on the portion of the volume taken by the 

dispersed phase, which occurs, for instance, in the case when the permittivities of the fluid 

and bubbles can be assumed constant. When the permittivity depends on the medium temperature, 

the electric field, and on other parameters, the equation derived in /2-44/ differ from (1.2) 

-(1.7). 
Equations (l.l)- (1.7) were derived using general principles of continuous medium mech- 

anics and thermodynamics of irreversible processes. 

Discontinuities of electric characteristics at the bubble-fluid interface is simulated 

by the dependence of mixture permittivity e on the volume concentration I. and on constants 

that define the electric properties of both media. This is related to the appearance in the 

right-hand side of the equation of motion (1.2) of striction type terms aIr(aa/ar)P/8n]la~i 

besides the derivatives of the Maxwellian stress tensor a(~~~~/4n-~~~~/8~)la~~. The sum 

of these two terms is rd [(de / dr) I!? /8n] / azi and cannot, generally speaking, be represented in 

the form of a gradient of some scalar quantity. 

The last term in braces in the diffusion equation (1.3) defines the motion of bubbles 

(particles) relative to the fluid in an inhomogeneous electric field. The force that generat- 

es such motion is also related to the presence of a discontinuity of electric properties of 

media at the bubble-fluid interface. 

The presence in equations of motion and diffusion of forces related to polarization of 

the medium as a whole may also occur when it is possible to disregard the polarization of each 

of the phases, i.e. when the phase permittivities e, and e, are equal unity. Effective 

polarization of the mixture may, in that case, be induced by, for instance, difference in the 

conductivities of phases and other factors. 

Equation (1.5) is used for determining the volume concentration of bubbles, and links the 

pressures in bubbles and in fluid, and with the variation of bubble volume, taking into account 

the presence electric field of the of electric of the 

ium at bubble-fluid interface. 

the considered the medium a whole compressible divup0. when the 

phase is pressure p determined, as an incompressible by 

the of system with the p,"=wnst. 

2. connection between of motion the diffusion multi- 
velocity The system equations derived Sect.1 consists equations of 
ion andenergy the mixture a whole, of diffusion which convert 

into equations motion and for each In a of cases system does 

define sufficiently the phenomena in such This is, example, relat- 

to the in the equation of terms, etc. 

equations of and momentum each phase multivelocity modeljare 
the form 

p1=p1“(1-I’), pIO=const, p*T + p,TvS = (2.1) 

pldG = - (1 - r) vip + ri,, + FZ + plot1 - qg, + v,P 
&V,i 

ps cyt = - rvip - r:., + ~,“i + pai, f,,, = Lo (v2 - v1) 

(2.2) 

where T = const is assumed for definiteness. 
The first of Eqs. (2.2) is the equation of motion of the carrier phase, and the second 

the equation of motion of the dispersed phase; f,,, represents the momentum exchange,i.e. the 
"friction force" between phases: F,E and F," are the forces exerted by the electric field 

on the carrier and dispersed phases. Adding Eqs. (2.2) we obtain 
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p 2 + v*u;; = - vip + F; + P: + pgi + V,IP ( (2.3) 

We 

&k* , 
in the of multicomponent media p* and 

using 
--p*6ik &i,* = -p6ik nib - Vlpik 

p, p* and nikv hi* represent the pressure and the viscous stress tensor in 
systems of coordinates moving, respectively, at the carrier medium and mixture velocities. A 
detailed exposition of the physical meaning of p,p* and I&k, I&k* appeared in /5/. 

We subtract the second of Eqs. (2.2) divided by density pz from the first divided by 
density p, and obtain 

(2.4) 

Neglecting in the left-hand side of Eq. (2.3) the second term and the viscous forces 
VkTl” and in Eq. (2.4) the viscous forces VJIik/ p1 and the convection terms in its left-hand 
side, but retaining the terms proportional to the interphase friction force (respective esti- 
mates of these are readily obtained) and allowing for the equality f,, = &(v, -vr) = L,P(v, - 

u)/o, . we obtain , ._ . 

P+-Vp+FIE+FaE+p& J = pa (vz - ~1 = ““((-&+)vp+!&~J (2.5) p2LI 

To compare the models of the diffusion and multivelocity approximations we write the 
equations of motion (1.2) for the mixture and the equation of diffusion (1.3) in the isother- 
mic case 

p+ -vp-+rv-$$+pg, J=LT --$--$)Vp+-$V+$ 
I( d I (2.6) 

Comparison of Eqs. (2.5) and (2.6) yields expressions for F,E and F,r , and the relation 
between coefficients L and Lt 

FIE=O, F+rv+& L- $$L;l 
(2.7) 

To find the expressions for coefficients Lt and L we assume that the particles or bub- 
bles are identical, and that the friction force between fluid and dispersed particles perunit 
of the medium volume is equal to the sum of frictionforcesbetweenthe fluidandeachparticlein 
a unit volume, as defined by the Stokes formula, with the coefficient L~=6nplan (pl is the 
dynamic viscosity of the carrier fluid, a is the particle or bubble radius,and n is the numb- 
er of particles or bubbles in a unit volume of the mixture). In this case the formula for the 
coefficient L is 

L= PI”P2 
Bnp+np*T (2.8) 

Note that the Stokes formula for the friction force acting on a bubble is only valid if 

the bubble behaves as if it had a solid boundary, which is possible, for instance, in the 

presence of surface-active substances or charges spread over its surface. Formula (2.8) in 

the case of low volume concentration of bubbles 

P1° 
rd 1 and low real density of bubbles pz"< 

is of the form 
L=T-' (paO)%m 

6Jrpl (3m/4#" 
(2.9) 

where m is the mass of a bubble. 
Formula (2.7) implies that the electric field force related to the polarization of the 

medium as a whole acts only on the dispersed phase F,” = 0. This is the consequence of the 
particular form of the dissipation function used in /Z-4/ in the construction of the model 
of polarizablemultiphase media. Note that in the approximation of fluid incompressibility, 
pressure p in the equation of motion for both phases is determined by the solution of the 

problem, and may contain terms related to the medium polarization. Such terms may also appear 

in expressions for the viscous stress tensor of the carrier phase in terms of chemical potent- 
ials /3,4/. 

Assuming that the force F,s = nlE exerted by the electric field on bubbles is the sum 
of identical forces fs acting on asingle bubble of radius a, and using the second of form- 
ulas (2.7), we can write for force fs the formula 

(2.10) 

When the gas filling the bubbles and the carrier fluid are nonconducting, the permittivit- 
ies of fluid e, and of gas ep may be assumed constant and I===zl, and the following form- 
ula holds: 

ae I ar = 3~ (e, - eI) i (Ze, + s,), E = e, + ra.5 / ar (2.11) 
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while the formula for the force fE acting on a single bubble is of the form 

which is the same as the formula proposed in /6/. 

3. The formula for bubble volume variation. The usually used Rayleigh equation 
for defining the motion of a fluid with gas bubbles cannot be applied in the case of polariz- 
able media, and is here replaced by Eq. (1.5). To understand the phenomenaoccurring in the 
considered here medium it is necessary to clarify the physical meaning of terms appearing in 
Eq. (1.5). 

3.1. In the absence of evaporation and condensation the velocity v!(a) at the bubble 
boundary is equal to the rate of variation of the spherical bubble radius a'. In the case 
of identical bubbles 

p1 $(F/Pz) 
Vf (4 = a’ = && T (3.1) 

When the electric field is absent, the condition of continuity of the momentum flux at 
the bubble-fluid interface, can be written, neglecting the viscosity of gas /l/ and taking in- 
to account formula (3.1), as 

4P1 4PlPZ da v / Pz) 
P&?-Pf= yVt@)=~~ (3.2) 

where pf and pg are the fluid and gas pressures, respectivley, near the fluid-gas interface. 
When the bubble is fairly small, its pressure can be assumed uniform and equal ps; if 

the radial motion of fluid surrounding the bubble is neglected, the pressure of the fluid 
around a single bubble is also uniform and equal pt. When the number of bubbles in the 
mixture is fairly small r<i, the effect of one bubble on another, either directly or 
indirectly through effectonthe carrier fluid, can be neglected. It is then possible to ass- 
ume that the pressure in the gas and in the fluid is, respectively poz =pg and p=pt,and 
use for defining their relation the equation 

(3.3) 

The comparison of Eq. (3.3) with (1.5), proposed here, yields for the coefficent Lr,in 
the absence of an electric field, the following formula: 

Lr = 3r/(4p,) (3.4) 

It follows from the above that the kinetic equation (1.5) for the variation of bubble 
volume, derived in /2-4/, may be treated as the condition at the discontinuity surface for 
some mean pressure of fluid and gas, taking into account the viscous stresstensor in the fluid. 
The term Lr-‘p,d, (l?/p,)/dt in Eq. (1.5) is proportional to the fluid velocity at the bubble bound- 
ary and takes into account the carrier phase viscosity. 

Note that formula (3.4) was derived on the assumption of constant pressure in bubbles and 
smallness of their volume concentration, neglecting the viscosity of gas and the fluid kinetic 
energy associated with bubble pulsation. If even one of these conditions is violated, form- 
ula (3.4) may no longer be valid. 

3.2. The term (a~/ ar)E’/ (8n) in Eq. (1.5) defines the electric field effect on thebubble 
volume variation. When ~E/c%? is determined by formulas (2.11), this term is equal to the 
remainder of momentum fluxes in the fluid and gas, associated with the electric field and 
averaged over the surface of a bubble. Thus, Eq. (1.5) has the meaning of the averaged con- 
dition of continuity of momentum flux at the bubble-fluid interface, even in the presence of 
the electric field. 

To prove this we consider a spherical bubble of nonconducting gas with permittivity e, 
in a nonconducting fluid with permittivity E, in the field E, uniform at infinity. Let us 
show that the difference of projections of the tensor of Maxwellian stresses Tij outside and 
inside the bubble on the normal to its surface is 

where Ei” and I)," are components of the true electric field and induction. 
The difference of projections of the Maxwellian stress tensor on the normal to the gas- 

fluid interface is 
(Tiini,j) = (Z!$Y.?{+_} _ !!$.?+) 

(3.5) 

It is assumed here that the electric induction normal component D,M and the electric 
field tangential component ErM are continuous along the bubble boundary, and the notation 
(A)=A,-AA, is used; Al and A, are the values of A in the fluid and gas, respectively. 

The electric field E,$ inside the gas bubble in the dielectric fluid and in field E, 
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uniform at infinity, is homogeneous and determined by the formula 

E'%' = 3e,E, / (2~1 -t- Ez) ,'lt (3.6) 

The quantities D,,~~ and E,‘ at the bubble surface are, with allowance for (3.6), of the 
form 

3% 
&I E,M=------E COsCl 2e,+el = (3.7) 

where 0 and D are spherical coordinates of a point on the bubble surface, and the z-axis 
is directed along vector E,. 

Taking into account (3.7) and averaging formula (3.5) over the bubble surface, we obtain 

(3.8) 

The last equality in formula (3.8) is valid if the field E_ at considerable distance 
from particles can be assumed equal to the field E defined by the Maxwell equation (1.7). 

4. The equations of energy in the multivelocity model. Using the equations 
of continuity and motion (2.1) and (2.2), the equation of energy for the electromagnetic field 
in the case of nonconducting medium (i.e. the electrohydrodynamics approximation) 

E OD 
-‘rrt= ‘(JT 

- dtv (2 [EH]) (4.1) 

and, the Gibbsidentitiesfor the internal energy of each phase, in the absence of field u,,, 

(SW is the entropy of the u-phase in the absence of electric field) 

(4.2) 

and taking into account formulas (2.7) for the force F,E, FzB , in conformity with /2-4/,we 
obtain 

Note that equality (4.3) was derived on the assumption that the mixture permittivity depends 
only on the volume concentration r. 

Let us assume that the equation of energy for the medium and field is of the form 

(4.4) 

We define the mixture entropy by the formula pS = p,sol $- p2s02+ When E = e(r) the mix- 
ture entropy S is equal its entropy outside the field. 

The equation for the variation of entropy S is of the form 

We assume that reversible entropy flux is ~1solrl + pzsozvz+ g/ T, and the dissipative 
function 0 of the form 

(4.6) 

Using the Onsager principle it is possible to obtain the kinetic equations which close 
the system of equations of the multivelocity model 

where, for simplicity, the cross effects have been omitted. 

5. Properties of the system of equations which define polarizable dis- 
perse mixtures in various approximations. In formulating various problems it is 
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important to know the propagation velocities of weak discontinuities and the type of applied 
equations. A simplification or complication of the system of equations may, generally speak- 
ing, result in a change of the equation type. Below, we consider the isothermal case of a 
multivelocity model and various approximations. 

lo. The isothermic case of the multivelocity model of a mixture of fluid with gas bub- 
bles when the dependence of E on r (a&/X = cod) is linear. The determining equations in 
diNPnsionless form are 

ar/ at+ - (1 - r)G*v,* + v,*vr = 0 (5.1) 
(5.2) 

rap20* / at* + pz”*ar / at* + rvz*cp,~* + l,2*Pao*Tr + pz~wv,* = 0 
p,o* (1 - r) a~,* / at* + plo* (I - r) (v,*v*) vl* = 

- (1 - r)v*p*- st-~r(p,~*)yvl* - v2*) + (I - r)P1o*w*g/g 

p,o*rave*lat* + pzo*r (v2*v*) v2* = - rc*p* + St-lr (p,c*)~Ja x 
(VI* - Vz*) + rPzo*w2g / g + @E* / ar) rC*E** 

au at* + v*rV,* = -& (p’ - R*pz” - (aE* / ar)E*') 

rot*E* =0 , ‘i*D* = 0, n* = e*E* 

1'1 '* = p,"/ po, p?O* = p*O/ pot \I,* = VI/ Vg, v,* = vt/ VO, p* = p / (pOVo?) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

E*2 = .s,E~ I (8np&), R* = R,T / v,,=, E* = E / E, 

rot* = rot-h, r* = C.h, t* = tv,//L, &.* = Lrp&hr FP = gh / vo2 

where p. and v. are characteristic values of the true density and velocity of particles, and 
h is a characteristic dimension of the problem. The system of Eqs. (5.1)-(5.7) is obtained 
from system (2.1), (2.2), (l-5), and (1.7) using formulas (2.7) and (2.9). 

The equations for a mixture of fluid and solid particles on the same assumptions consist 
of equations of continuity (5.1) and (5.2), equations of motion (5.3) and (5.4) in which it 
is necessary to set pzo* = 1 (pO = pro = const), and of Maxwell equations (5.6); it is neces- 
sary to set in formulas (5.7) p0 = pa". 

In the one-dimensional unsteady case the propagation velocity h of weak discontinuities 
in a medium defined by Eqs. (5.1)-(5.7) is 

a, = v,, b,, = (vlrpIo + V% (I - r) pa0 f: k;:) /Ip: r + p: (1 - r)l 
A = (1 - r)r(wr + PC (I - r)i202 (a& / aryc3 - plops0 (Us - ~,)a}, D = const 

(5.8) 

(here and subsequently the asterisks are omitted and all parameters are dimensionless). 
It is obvious that in the absence of an electric field D = 0, A<O, and there is only 

one propagation velocity & = Vz of weak discontinuities. In the presence of an electric 
field and A > 0 there may be two (A = O)I or three (A>O) velocities. 

20. Let us consider the system of equations that define the motion of bubbles, when it 
is possible to disregard the acceleration of fluid-Eqs.(5.2)-(5.6) in which we set 0, / 
& = 0. The propagation velocities of weak discontinuities are 

In this case,unlike in formulas (5.8), h,,,,, are always real. When the field is pres- 
ent there are three characteristics, in its absence only one. 

3O . Let us consider the system of Eqs. (5.1)- (5.7) in which instead of the equations 
of motion (5.3) and (5.4) we use the equation of motion of the mixture, i.e. the sum of Eqs. 
(5.3) and (5.4) and the remainder of Eqs. (5.3) and (5.4) divided by pt(l- r) and pa0r , 
respectively. We disregard the remainder of convection terms, which are small in comparison 
with the friction force, in the equation obtained by the subtraction of Eqs. (5.4) and (5.3). 

Note that the obtained simplified system differs from that of Eqs. (l.l)- (1.7) of the 
diffusion approximation by the equation of motion (1.2) for the mixture which in Case 3O con- 
tains the additional term Gkr,,'". When the difference in velocities is small, for instance, 
in comparison with the mean mass velocity, this term may be negelected, and Case 3O is trans- 
formed in the diffusion approximation. 

In Case 3O the formulas forthe propagation velocity of weak discontinuities are of the 
form 

h, 7: up, h,,, (asp; - f.lp; + A,."~) / (p2 - pl‘), br, = p1 p2q(v1 - u2)* + 2D2p (&/ $r)* / E3 (5.10) 

Formulas (5.10) imply that in Case 3O of the simplified system of equations, unlike in 
the multivelocity model, there are always three characteristic velocities, even in the absence 
of field. 

4O. Let us consider the system of Eqs. (l.l)-_(1.7), which defines the motion of fluid 
with gas bubbles in the diffusion approximation which is a further simplification of System 
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(5.1)- (5.7) in conformity with the exposition in Sects.1 and 2. Propagation velocities of 
weak discontinuities are determined by formulas 

h, = v,, & 7. Et rir 1202 (a&f dr)2p I &$I@ / (p," - PI') (5.11) 

The propagation velocities of weak discontinuities of equations defining the motion of 
fluid with incompressible particles are determined in Cases lo- 4O by the second relations of 
(5.8)-(5.111, respectively, with pzo = 1. The velocities determined by the first equalities 
of formulas (5.8)-(5.11) are absent (*). 

The presence of an electric field considerably affects the propagation velocity of weak 
discontinuities in an incompressible fluid, In Cases lo, 2O, and 4 not only the velocity 
changes but, also, the number of propagation velocities of weak discontinuities, i.e. the 
type of equations. New discontinuity propagation velocities may develop as the result of 
phase polarization in the electric field. There exist weak perturbations whose velocities 
coincide with weak discontinuity velocities. 

Let us explain the physical meaning of the electric field effect on the propagation vel- 
ocity of weak discontinuities in an incompressible fluid with incgmpressible particles whose 
permittivity differs from that of the fluid. We shall use Case 2 of the multivelocity model 
which defines the motion of bubbles when the effect of fluid acceleration on their flow can 
be neglected. 

In the absence of an electric field, weak discontinuities travel at the dispersed phase 
velocity 2‘2 . These are perturbations of the entropy wave type in which particle concentra- 
tion r changes, while the remaining parameters are unaffected. 

In the presence of an electric field a local perturbation of 7 results in the appearance 
of a local electric field gradient FE% and of a force proportional to UE” which acts on 
particles whose permittivity differs from that of the fluid. This forceinducesmotion of 
particles, which diminishestheperturbation of the volume concentration f, similarly to the 
effect of pressure perturbation in a compressible gas, which induces the motion of gas mole- 
cules with the resulting decrease of density perturbations. The propagation of acoustic waves 
in compressible media is related to this effect. In a polarizable disperse medium consisting 
of incompressible phases the part of pressure gradientisplayed by the electric field gradient 
generated by perturbations of the dispersed phase volume concentration, as defined by Eq. .6), 

Thus, the concentration perturbations in the presence of an electric field propagate at 
a velocity determined by the velocity of particles and the electric field intensity. The 
volume concentration of particles, the velocity, and the electric field change in these waves. 
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